OPERATIONAL AMPLIFIERS

➤The integrated circuit or IC is a Miniature, low cost electronic circuit consisting of active and passive components that are joined together on a single crystal chip of silicon

➢It is a versatile device that can be used to amplify DC as well as AC input signals and was originally designed for computing such mathematical functions as Addition,Subtraction,Multiplication and Integration

APPLICATIONS OF AN INTEGRATED CIRCUIT

≻Communication

≻Control

➢Instrumentation

Computer

Electronics

ADVANTAGES

Small size
Low cost
Less weight
Low supply voltages
Low power consumption
High reliable
Matched devices
Fast speed

DISADVANTAGES

➢Most Op-amp are designed for low power operation.

➢ For high output the Op-Amp should be designed specifically.

Commercial Op-Amp shuts off when the load resistance is below the specific level

CLASIFICATION OF IC 'S >Digital IC's ≻Linear IC's >Integrated circuits i) Monolithic circuits a) Bipolar i)PN junction isolation ii) Dielectric isolation **N b**) Unipolar i) MOSFET **II) JFET** ii) Thick and Thin Film iii) Hybrid circuits

SYMBOL OF OP-AMP

7- Terminals, 4- Input, 1-Output =IC 741

IDEAL CHARACTERISTICS OF OP-AMP

Infinite input impedance
Infinite open-loop gain
Zero output impedance
Infinite bandwidth
Zero noise.
It has positive and negative inputs which allow circuits that use feedback to achieve a wide range of functions.

PERFORMANCE PARAMETERS OF OP-AMP

>Input Offset voltage Input Offset current ► Input bias current Differential Input resistance > Open loop Voltage gain **CMRR** >Output resistance >Input voltage range > Power supply rejection ratio **≻**Power consumption Slew rate **≻**Gain >Output offset voltage

INPUT OFFSET VOLTAGE

➢ It is defined as the voltage that must be applied between the two input terminals of an OPAMP to null or zero the output.

≻The input offset voltage of IC741 Op-Amp is 6mv

INPUT OFFSET CURRENT

The algebraic difference between the currents flowing into the two input terminals of the Op-Amp.

≻The input offset current of IC741 Op-Amp is 200nA

INPUT BIAS CURRENT

➤The average value of the two currents flowing into the Op-Amp input terminals.

The input bias current of IC741 Op-Amp is 500nA **DIFFERENTIAL INPUT RESISTANCE**

➢It is the equivalent resistance measured at either the Inverting or Non-Inverting Input terminal with the other Input terminal grounded.

≻The Differential Input Resistance of IC741 Op-Amp is 2MΩ

OPEN LOOP VOLTAGE GAIN

➢It is the ratio of output voltage to the differential input voltage.

> It is denoted by AOL = Vo/Vd

The Open loop Voltage gain of IC741 Op-Amp is typically 200,000

➢ It is the ratio of differential voltage gain Ad to the Common mode voltage gain Ac.

≻It is denoted by CMRR = Ad/Ac

> The CMRR of IC741 Op-Amp is 90db

OUTPUT RESISTANCE

➢It is the equivalent resistance measured between the output terminal of the Op-Amp and Ground.

≻It is denoted by Ro.

The Output Resistance of IC741 Op-Amp is 75 Ω INPUT VOLTAGE RANGE

➢ It is the range of a common mode input signal for which a differential amplifier remains linear.

> The Input Voltage Range of IC741 Op-Amp is ± 13V

POWER SUPPLY REJECTION RATIO

➢It is defined as the ratio of the change in supply voltage to the equivalent (differential) output voltage it produces.

≻The Power Supply Rejection Ratio of IC741 Op-Amp is 30 µV/V

POWER CONSUMPTION

➢ It is the amount of quiescent power to be consumed by Op-Amp with zero input voltage, for its proper functioning.

≻The Power Consumption of IC741 Op-Amp is 85mW.

SLEW RATE

➢It is defined as the maximum rate of change of output voltage with time.

GAIN

➢It is the bandwidth of an Op-Amp when voltage gain is unity.

≻The Gain of IC741 Op-Amp is 1MHz

OUTPUT OFFSET VOLTAGE

>It is the DC voltage present at the Output terminals when both the input terminals are grounded

ISOLATION OR VOLTAGE FOLLOWER.

>Applications arise in which we wish to connect one circuit to another without the first circuit loading the second. This requires that we connect to a "block" that has infinite input impedance and zero output impedance. An operational amplifier does a good job of approximating this. Consider the following:

Illustrating Isolation.

ISOLATION OR VOLTAGE FOLLOWER....

Circuit isolation with an op amp.

It is easy to see that: $V_0 = V_{in}$

NONINVERTING OP AMP

NON- INVERTING OP AMP...

Writing a node equation at "a" gives;

$$\frac{V_2}{R_0} + \frac{(V_2 - V_0)}{R_{fb}} = 0$$

SO

$$\frac{V_0}{R_{fb}} = V_2 \left[\frac{1}{R_0} + \frac{1}{R_{fb}}\right]$$

which gives,

$$V_0 = \left(1 + \frac{R_{fb}}{R_0}\right) V_2$$

INVERTING OP AMP

$$V_{\text{out}} = -V_{\text{in}}(R_{\text{f}}/R_{\text{in}})$$

INTEGRATOR

$$\frac{dv_{out}}{dt} = -\frac{V_{in}}{RC}$$
or
$$V_{out} = \int_{0}^{t} \frac{V_{in}}{RC} dt + c$$
Where,

c = Output voltage at start time (t=0)

DIFFERENTIATOR

Differentiator

$$V_{out} = -RC \frac{dv_{in}}{dt}$$